SET	A

Roll Number

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION MATHEMATICS

C	LASS:	Χ
	LMJJ.	/\

Sub. Code: 041

Time Allotted: 3 Hrs

Max. Marks: 80

15.09.2019

General Instructions:

i. All questions are compulsory.

- ii. Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 8 questions of 3 marks each. Section D contains 6 questions of 4 marks each.
- iii. There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each, three questions of 3 marks each and two questions of 4 marks. You have to attempt only one of the alternatives in all such questions.
- iv. Use of calculators is not permitted.

			A (20 x 1 = 20 marks) s 1 to 20 carry 1 mark e	each)
I	For questions 1 to along with the ch		answer from the option	ons given. Write the answer also
1.	If $x = a$ and $y = b$ is	s the solution of equations	x - y = 2 and $x + y = 4$,	find a and b.
	(a) a=1, b=3	(b) a=2,b=-1	(c) a=3, b=1	(d) a=1, b=-1
2.	Find the value of 'l	k' for which one zero of p	$(x) = 3x^2 + 12x - k$ is the	e reciprocal of the other.
	(a) 3	(b) - 3	(c) 4	(d) – 4
3.	In a ΔABC, DE is	parallel to BC. If AB = 10	cm, AC = 8 cm and AD	= 5 cm, then find CE.
	(a) 6cm	(b) 4cm	(c) 5cm	(d) 10cm
4.	$(\sec A + \tan A) (1$	– sin A) =		
	(a) sec A	(b) sin A	(c) cosec A	(d) cos A
5.	A ladder makes an 2m away from the	angle of 60° with the growall, find the length of la	und when placed against dder.	t a wall. If the foot of the ladder is
	(a)2 m	(b) $\sqrt{3}$ /4 m	(c) $4/\sqrt{3}$ m	(d) 4 m
6.	If roots of $x^2 - 5x = (a) 25/5$	$+ a = 0$ are equal, then a = (b) $\pm 25/4$	(c) 25/4	(d) None
7.		e point of interaction of the grouped data gives	ne 'less than type' and of	the 'more than type' cumulative
	(a) Mean	(b) Median	(c) Mode	(d)All three

Page 1 of 4

8. TP and TQ are two tangents to a circle with centre O such that $\angle POQ = 110^{\circ}$. Then find $\angle PTQ$.

(a) 110°

- (b) 90°
- (c) 180°
- (d) 70°

- 9. Find the distance of the point (-5, -7) from the y axis
 - (a) 5 units
- (b) -5 units
- (c) 7units
- (d) -7units

- 10. If p-1, p+3, 3p-1 are in A.P., then p is equal to
 - (a) 2

- (b) 4
- (c) 4

(d) - 2

- Il For questions 11 to 20, answer the following.
- 11. Find the value of k for which the pair of linear equations 4x + 6y 1 = 0 and 2x + ky 7 = 0 represent parallel lines.
- 12. The graph of y= f(x) is given in the fig 1, how many zeroes are there for f(x).

fig 1

- 13. $\triangle ABC \sim \triangle PQR$, perimeter of $\triangle ABC = 35$ cm and perimeter of $\triangle PQR = 42$ cm and PR = 6 cm. Find AC.
- 14. Write sin A in terms of cot A
- 15. Check the nature of roots of the equation $2x^2 4x + 3 = 0$.
- 16. Write the empirical relation between mean, mode and median.
- 17. In figure 2, find the length of PR.

- 18. Name the line that intersects the circle at two points?
- 19. Find the distance between the points Q(-5, 4) and R(-1, 0).
- 20. Write the first four terms of an A.P. whose first term is -2 and common difference is -2.

SECTION B (6 x 2 = 12 marks) (Question numbers 21 to 26 carry 2 marks each)

21.

From fig3, find \angle P.

22. If $\sin (A - B) = \frac{1}{2}$, $\cos (A + B) = \frac{1}{2}$; $0^{\circ} < A + B \le 90^{\circ}$, A > B, find A and B.

OR

Evaluate: $\frac{6 \sin 23^{\circ} + \sec 79^{\circ} + 3 \tan 48^{\circ}}{120^{\circ} + 3 \tan 48^{\circ}}$

Evaluate: $\frac{}{\cos \cot 42^{\circ} + 6\cos 67^{\circ}}$.

- 23. Find the roots of quadratic equation $6x^2 x 2 = 0$
- 24. The percentage of marks obtained by 100 students in an examination are given below:

Marks	30-35	35-40	40-45	45-50	50-55	55-60	60-65
Frequency	14	16	18	23	18	8	3

Find the Mode for the above data.

25. Find the values of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units.

OR

If the point (7, 0), (1, 2) and (x, y) are collinear, find a relation between x and y.

26. Find the 10th term from end of the AP: 4, 9, 14,......254

SECTION C (8 x 3 = 24 marks) (Question numbers 27 to 34 carry 3 marks each)

- 27. Solve the following pair of equations: $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$ and $\frac{4}{\sqrt{x}} \frac{9}{\sqrt{y}} = -1$
- 28. Find the quadratic polynomial, sum and product of whose zeroes are -1 and -20 respectively. Also find the zeroes of the polynomial so obtained.
- 29. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR. Show that Δ ABC \sim Δ PQR.

OR

BL and CM are medians of a triangle ABC right angled at A. Prove that $4 (BL^2 + CM^2) = 5 BC^2$.

- 30. Prove that: $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$
- 31. Find the mean of the following data:

Class Interval	100-120	120-140	140-160	160-180	180-200
Frequency	10	20	30	15	5

- Find the ratio in which the point $P\left(\frac{1}{2}, y\right)$ divides the line segment joining the point A (3, -5) and B (-7, 9). Also find the value of y.
- 33. PQR is a right angled triangle at Q. PQ= 5 cm, QR=12 cm. A circle with centre O is inscribed in Δ PQR, touching all its sides. Find the radius of the circle.

OR

XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that \angle AOB = 90°.

34. If 7^{th} term of an A.P is $\frac{1}{9}$ and 9^{th} term is $\frac{1}{7}$, find 63^{rd} term.

OF

The sum of n terms of an A.P is $3n^2 + 5n$. Find the A.P. Hence find its 15^{th} term

SECTION D (6 \hat{x} 4 = 24 marks) (Question numbers 35 to 40 carry 4 marks each)

- 35. Draw the graphs of the pair of linear equations: x+2y=5 and 2x-3y=-4 Also find the points where the lines meet the x-axis.
- 36. Find all the zeroes of the polynomial $2x^4 11x^3 16x^2 + 55x + 30$ if two of its zeros are $\sqrt{5}$, $-\sqrt{5}$.
- 37. Prove that the ratio of the areas of two similar triangles is equal to the squares of the ratios of their corresponding sides.

OR

The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{CO} = \frac{BO}{DO}$. Show that ABCD is a trapezium.

38. The angle of elevation of the top of a hill from the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If the tower is 50m high, find the height of the hill.

OR

From a point, 36 m above the surface of a lake, the angle of elevation of a bird is observed to 30° and angle depression of its image in the water of the lake is observed to be 60°. Find the actual height of the bird above the surface of the lake.

- 39. The sum of the squares of two consecutive odd numbers is 394. Find the numbers.
- 40. The median of the following data is 52.5. Find the values of x and y, if the total frequency is 100.

Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	2	5	x	12	17	20	y

End of the Question Paper

SET	B
OLI	v

Roll Number

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION **MATHEMATICS**

-	LA	-	-		V
	Δ	`	`	•	Х

Sub. Code: 041

Time Allotted: 3 Hrs

Max. Marks: 80

15.09.2019

General Instructions:

All questions are compulsory.

- Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each. ii. Section C contains 8 questions of 3 marks each. Section D contains 6 questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of 2 iii. marks each, three questions of 3 marks each and two questions of 4 marks. You have to attempt only one of the alternatives in all such questions.
- Use of calculators is not permitted. iv.

	•	-		
			20 x 1 = 20 marks) to 20 carry 1 mark each)
I	For questions 1 to 10, with the chosen option		ver from the options give	en. Write the answer also along
۱.	(sec A + tan A) (1 – sin	n A) =		
	(a) sec A	(b) sin A	(c) cosec A	(d) cos A
2.	If $p-1$, $p+3$, $3p-1$	are in A.P., then p is equa	l to	
	(a) 4	(b) - 4	(c) 2	(d) - 2
3.	In a ΔABC, DE is para	allel to BC. If AB = 10 cm	n, $AC = 8$ cm and $AD = 5$	cm, then find CE.
	(a) 6cm	(b) 4cm	(c) 5cm	(d) 10cm
4.	If $x = a$ and $y = b$ is th	e solution of equations x	-y = 2 and $x + y = 4$, find	d a and b.
	(a) a=1, b=3	(b) a=2,b=-1	(c) a=3, b=1	(d) a=1, b=-1
5.	A ladder makes an an ladder is 2m away fro	gle of 60° with the ground m the wall, find the lengt	d when placed against a v h of ladder.	vall. If the foot of the
	(a)2 m	(b) $\sqrt{3}$ /4 m	(c) $4/\sqrt{3}$ m	(d) 4 m
6.	Find the distance of the (a) 5 units	he point (-5, -7) from the (b) -5 units	y axis (c) 7units	(d) -7units
7.	The abscissa of the pocumulative frequency	oint of interaction of the curve of grouped data gi	less than type' and of the	'more than type'
	(a) Mean	(b) Median	(c) Mode	(d)All three

TP and TQ are two tangents to a circle with centre O such that $\angle POQ = 110^{\circ}$. Then find $\angle PTQ$. 8.

(a) 110°

(b) 90°

(c) 180°

(d) 70°

If roots of x^2 - 5x + a = 0 are equal, then a = 09.

(a) 25/5

- (b) $\pm 25/4$
- (d) None
- Find the value of 'k' for which one zero of $p(x) = 3x^2 + 12x k$ is the reciprocal of the other. 10.
 - (a) 3

- (b) -3
- (c) 4

(d) -4

- For questions 11 to 20, answer the following. II
- Write the empirical relation between mean, mode and median. 11.
- The graph of y= f(x) is given in the fig 1, how 12. many zeroes are there for f(x).

- Write the first four terms of an A.P. whose first term is -2 and common difference is -2. 13.
- Write sin A in terms of cot A 14.
- Check the nature of roots of the equation $2x^2 4x + 3 = 0$. 15.
- Find the value of k for which the pair of linear equations 4x + 6y 1 = 0 and 2x + ky 7 = 016. represent parallel lines.
- 17. In figure 2, find the length of PR.

- Name the line that intersects the circle at two points? 18.
- 19. Find the distance between the points Q(-5, 4) and R(-1, 0).
- $\triangle ABC \sim \triangle PQR$, perimeter of $\triangle ABC = 35$ cm and perimeter of $\triangle PQR = 42$ cm and PR=6 cm. Find 20. AC.

SECTION B (6 x 2 = 12 marks) (Question numbers 21 to 26 carry 2 marks each)

The percentage of marks obtained by 100 students in an examination are given below: 21.

Marks	30-35	35-40	40-45	45-50	50-55	55-60	60-65
Frequency	14	16	18	23	18	8	3

Find the Mode for the above data.

22.

From fig3, find \angle P.

23. If $\sin (A - B) = \frac{1}{2}$, $\cos (A + B) = \frac{1}{2}$; $0^{\circ} < A + B \le 90^{\circ}$, A > B, find A and B.

Evaluate: $\frac{6 \sin 23^{\circ} + \sec 79^{\circ} + 3 \tan 48^{\circ}}{\csc 11^{\circ} + 3 \cot 42^{\circ} + 6\cos 67^{\circ}}.$

- 24. Find the roots of quadratic equation $2x^2 5x 3 = 0$
- 25. Find the values of y for which the distance between the points P (2, -3) and Q (10, y) is 10 units.

 OR

 If the point (7, 0), (1, 2) and (x, y) are collinear, find a relation between x and y.
- 26. Find the 10th term from end of the AP: 11, 15, 19,..........299

SECTION C (8 x 3 = 24 marks) (Question numbers 27 to 34 carry 3 marks each)

27. If 7^{th} term of an A.P is $\frac{1}{9}$ and 9^{th} term is $\frac{1}{7}$, find 63^{rd} term.

OR

The sum of n terms of an A.P is $3n^2 + 5n$. Find the A.P. Hence find its 15^{th} term

- 28. Find the quadratic polynomial, sum and product of whose zeroes are -1 and -20 respectively. Also find the zeroes of the polynomial so obtained.
- 29. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR. Show that Δ ABC \sim Δ PQR.

OR
BL and CM are medians of a triangle ABC right angled at A. Prove that $4 (BL^2 + CM^2) = 5 BC^2$.

- 30. Prove that : $\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$
- 31. Find the mean of the following data:

Class Interval	100-120	120-140	140-160	160-180	180-200
Frequency	10	20	30	15	5

- 32. Find the ratio in which the y-axis divides the line segment joining the point A(5, -6) and B(-1, -4). Also, find the value of that point on the y-axis.
- 33. PQR is a right angled triangle at Q. PQ= 5 cm, QR=12 cm. A circle with centre O is inscribed in ΔPQR, touching all its sides. Find the radius of the circle.

OR

XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that \angle AOB = 90°.

34. Solve the following pair of equations: $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$ and $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$

SECTION D (6 x 4 = 24 marks) (Question numbers 35 to 40 carry 4 marks each)

35. The median of the following data is 52.5. Find the values of x and y, if the total frequency is 100.

Class Interval	0-10	.10-20	20-30	30-40	40-50	50-60	60-70
Frequency	2	5	x	12	17	20	y

- 36. Find all the zeroes of the polynomial $2x^4 11x^3 16x^2 + 55x + 30$ if two of its zeros are $\sqrt{5}$, $-\sqrt{5}$.
- 37. Prove that the ratio of the areas of two similar triangles is equal to the squares of the ratios of their corresponding sides.

OR

The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{CO} = \frac{BO}{DO}$. Show that ABCD is a trapezium.

38. The angle of elevation of the top of a hill from the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If the tower is 50m high, find the height of the hill.

OR

From a point, 36 m above the surface of a lake, the angle of elevation of a bird is observed to 30° and angle depression of its image in the water of the lake is observed to be 60°. Find the actual height of the bird above the surface of the lake.

- 39. The sum of the squares of two consecutive even numbers is 340. Find the numbers.
- 40. Draw the graphs of the pair of linear equations: x + 2y = 5 and 2x 3y = -4 Also find the points where the lines meet the x-axis.

End of the Question Paper

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION **MATHEMATICS**

CLASS: X

Sub. Code: 041

Time Allotted: 3 Hrs

15.09.2019

Max. Marks: 80

General Instructions:

All questions are compulsory. i.

- Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each. ii. Section C contains 8 questions of 3 marks each. Section D contains 6 questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of 2 iii. marks each, three questions of 3 marks each and two questions of 4 marks. You have to attempt only one of the alternatives in all such questions.
- Use of calculators is not permitted. iv.

SECTION A $(20 \times 1 = 20 \text{ marks})$

(Question numbers 1 to 20 carry 1 mark each)								
I	For questions 1 to 10, o with the chosen option		er from the options give	n. Write the answer also along				
1.		at of interaction of the 'leaurve of grouped data give	ss than type' and of the 'n	nore than type'				
	(a) Mean	(b) Median	(c) Mode	(d) All three				
2.	2. Find the value of 'k' for which one zero of $p(x) = 3x^2 + 12x - k$ is the reciprocal of the other.							
	(a) 3	(b) -3	(c) 4	(d) -4				
3.	In a ΔABC, DE is paral	llel to BC. If $AB = 10$ cm	AC = 8 cm and AD = 5	cm, then find CE.				
	(a) 6cm	(b) 4cm	(c) 5cm	(d) 10cm				
4.	$(\sec A + \tan A) (1 - \sin A)$	ı A) =						
	(a) sec A	(b) sin A	(c) cosec A	(d) cos A				
5.		le of 60° with the ground the wall, find the length	when placed against a war of ladder.	all. If the foot of the				
	(a)2 m	(b) $\sqrt{3}$ /4 m	(c) $4/\sqrt{3}$ m	(d) 4 m				
6.	If $p-1$, $p+3$, $3p-1$ are in A.P., then p is equal to							
	(a) 4	(b) - 4	(c) 2	(d) - 2				

7. If x = a and y = b is the solution of equations x - y = 2 and x + y = 4, find a and b.

(a) a=1, b=3

(b) a=2,b=-1

(c) a=3, b=1

(d) a=1, b=-1

8. TP and TQ are two tangents to a circle with centre O such that $\angle POQ = 110^{\circ}$. Then find $\angle PTQ$.

 $(a) 110^{0}$

(b) 90°

(c) 180°

(d) 70°

9. Find the distance of the point (-5, -7) from the y-axis

(a) 5 units

(b) -5 units

(c) 7units

(d) -7units

10. If roots of $x^2 - 5x + a = 0$ are equal, then a =

(a) 25/5

(b) $\pm 25/4$

(c) 25/4

(d) None

- II For questions 11 to 20, answer the following
- 11. Write sin A in terms of cot A
- 12. The graph of y= f(x) is given in the fig 1, how many zeroes are there for f(x).

fig 1

- 13. Write the first four terms of an A.P. whose first term is -2 and common difference is -2
- 14. Write the empirical relation between mean, mode and median.
- 15. Check the nature of roots of the equation $2x^2 4x + 3 = 0$.
- 16. Find the value of k for which the pair of linear equations 4x + 6y 1 = 0 and 2x + ky 7 = 0 represent parallel lines.
- 17. In figure 2, find the length of PR.

- 18. Name the line that intersects the circle at two points?
- 19. Find the distance between the points Q(-5, 4) and R(-1, 0).
- 20. \triangle ABC ~ \triangle PQR, perimeter of \triangle ABC =35 cm and perimeter of \triangle PQR =42 cm and PR=6 cm. Find AC.

SECTION B (6 x 2 = 12 marks) (Question numbers 21 to 26 carry 2 marks each)

21. If
$$\sin (A - B) = \frac{1}{2}$$
, $\cos (A + B) = \frac{1}{2}$; $0^{\circ} < A + B \le 90^{\circ}$, $A > B$, find A and B.

OR

Evaluate: $\frac{6 \sin 23^{\circ} + \sec 79^{\circ} + 3 \tan 48^{\circ}}{\csc 11^{\circ} + 3 \cot 42^{\circ} + 6\cos 67^{\circ}}$

22.

From fig3, find $\angle P$.

- 23. Find the 10th term from end of the AP: 3, 11, 19,.....803.
- 24. The percentage of marks obtained by 100 students in an examination are given below:

Γ	Marks	30-35	35-40	40-45	45-50	50-55	55-60	60-65
	Frequency	14	16	18	23	18	8	3

Find the Mode for the above data.

- 25. Find the values of y for which the distance between the points P (2, -3) and Q (10, y) is 10 units.

 OR

 If the point (7, 0), (1, 2) and (x, y) are collinear, find a relation between x and y.
- 26. Find the roots of quadratic equation $2x^2 15x + 25 = 0$

SECTION C (8 x 3 = 24 marks) (Question numbers 27 to 34 carry 3 marks each)

27. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR. Show that Δ ABC \sim Δ PQR.

OR
BL and CM are medians of a triangle ABC right angled at A. Prove that $4 (BL^2 + CM^2) = 5 BC^2$.

- 28. Find the quadratic polynomial, sum and product of whose zeroes are -1 and -20 respectively. Also find the zeroes of the polynomial so obtained.
- 29. Solve the following pair of equations: $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$ and $\frac{4}{\sqrt{x}} \frac{9}{\sqrt{y}} = -1$
- 30. Prove that : $\frac{\sin \theta 2\sin^3 \theta}{2\cos^3 \theta \cos \theta} = \tan \theta$
- 31. Find the mean of the following data:

Class Interval	100-120	120-140	140-160	160-180	180-200
Frequency	10	20	30	15	5

- 32. Find the ratio in which the point A (x, 2) divides the line segment joining the point P (-3, -4) and Q (3, 5). Also find the value of x.
- 33. PQR is a right angled triangle at Q. PQ= 5 cm, QR=12 cm. A circle with centre O is inscribed in Δ PQR, touching all its sides. Find the radius of the circle.

XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that \angle AOB = 90°.

34. If 7^{th} term of an A.P is $\frac{1}{9}$ and 9^{th} term is $\frac{1}{7}$, find 63^{rd} term.

OR

The sum of n terms of an A.P is $3n^2 + 5n$. Find the A.P. Hence find its 15^{th} term

SECTION D (6 x 4 = 24 marks) (Question numbers 35 to 40 carry 4 marks each)

35. The angle of elevation of the top of a hill from the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If the tower is 50m high, find the height of the hill.

OR

From a point, 36 m above the surface of a lake, the angle of elevation of a bird is observed to 30° and angle depression of its image in the water of the lake is observed to be 60°. Find the actual height of the bird above the surface of the lake.

- 36. Find all the zeroes of the polynomial $2x^4 11x^3 16x^2 + 55x + 30$ if two of its zeros are $\sqrt{5}$, $-\sqrt{5}$.
- 37. Prove that the ratio of the areas of two similar triangles is equal to the squares of the ratios of their corresponding sides.

OR

The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{CO} = \frac{BO}{DO}$. Show that ABCD is a trapezium.

- 38. Draw the graphs of the pair of linear equations: x+2y=5 and 2x-3y=-4 Also, find the points where the lines meet the x-axis.
- 39. The sum of the squares of two consecutive natural numbers is 421. Find the numbers.
- 40. The median of the following data is 52.5. Find the values of x and y, if the total frequency is 100.

Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	2	5	X	12	17	20	у

End of the Question Paper